Worksheet 10 – Increasing/Decreasing, Concavity, and Curve Sketching

1. Use the graph of f(x) below to answer parts (a) through (h).

- (a) Find the intervals where f(x) is increasing.
- (b) Find the intervals where f(x) is decreasing.
- (c) Find all the x-values where the slope of f(x) is zero.
- (d) Find all the x-values where the derivative of f(x) does not exist.
- (e) Find all the critical points of f(x).
- (f) Find the coordinates of all the relative maxima of f(x).
- (g) Find the coordinates of all the relative minima of f(x).
- (h) Find all the x-values where f(x) changes from increasing to decreasing or decreasing to increasing.
- 2. Use the numbered points on the graph of f(x) at the right to answer parts (a) through (h).
 - (a) At which points is the function increasing?
 - **(b)** At which points is there a relative maximum?
 - (c) At which points is the slope negative?
 - (d) At which points is the slope zero?
 - (e) At which points is there a relative minimum?
 - **(f)** At which points is the function decreasing?
 - (g) At which points is the slope positive?

- 3. Sketch the graph of a single continuous function with a y-intercept at (0,2) that has the following properties.

 - $(1) f'(x) < 0 \text{ on } (-\infty, -6) \cup (1,3)$ $(3) f''(x) > 0 \text{ on } (-\infty, -6) \cup (3, \infty)$ $(2) f'(x) > 0 \text{ on } (-6,1) \cup (3,\infty)$ (4) f''(x) < 0 on (-6,3)
- **4.** Use the second derivative test to find the local extrema of $f(x) = x^3 3x$.

- 5. Use the graph of f'(x) at the right to answer parts (a) through (i).
 - (a) What is the slope of f(x) at x = 2?
 - (b) For which x-values does f(x) have a horizontal tangent line?
 - (c) Find the intervals where f(x) is increasing.
 - (d) Find the x-values where f(x) has a relative minimum.
 - (e) Find the x-values where f(x) has a relative maximum.
 - (f) Is f(x) increasing or decreasing at x = 5?
 - (g) Is f(x) concave up or concave down at x = 4?
 - (h) Find the x-values where f(x) has an inflection point.
 - (i) Find $\lim_{x \to -\infty} f(x)$.

- **6.** Match each observation 1-5 to each conclusion A-E.
 - (1) The point (3,4) is on the graph of f'(x).
 - (2) The point (3,4) is on the graph of f(x).
 - (3) The point (3,4) is on the graph of f''(x).
 - (4) The point (3,0) is on the graph of f'(x) and (3,4) is on the graph of f''(x).
 - (5) The point (3,0) is on the graph of f'(x) and (3, -4) is on the graph of f''(x).
 - (A) f(x) has a relative minimum at x = 3.
 - (B) At x = 3, the graph of f(x) is concave up.
 - (C) At x = 3, the tangent line to the graph of f(x) has slope 4.
 - (D) At x = 3, the value of f(x) is 4.
 - (E) f(x) has a relative maximum at x = 3.

- (a) Find the intervals where f(x) is decreasing.
- (b) Find the intervals where f'(x) > 0.
- (c) Find all the critical points.
- (d) Find the intervals where f(x) is concave up.
- (e) Find the intervals where f(x) is concave down.
- (f) Is f'(-4) positive, negative or zero?
- (g) Is f''(-4) positive, negative, or zero?
- (h) Is f'(0) positive, negative or zero?
- (i) Is f''(0) positive, negative or zero?
- (j) Is f'(1) positive, negative, or zero?
- (k) Is f''(1) positive, negative, or zero?

- **8.** Await the instructor directions for the following functions.
 - (a) $f(x) = x^3 + 3x^2 9x + 4$
- (e) $f(x) = x^4 4x^3 + 10$

(b) $f(x) = 1 + x^{2/3}$

(f) $f(x) = 6x^{2/3} - 4x$ (g) $f(x) = \frac{(x+1)^2}{1+x^2}$ (h) $f(x) = e^{2/x}$

(c) $f(x) = \frac{x^2+4}{2x}$

- (d) $f(x) = \arcsin(1/x)$