Worksheet 10 - Increasing/Decreasing, Concavity, and Curve Sketching

1. Use the graph of $f(x)$ below to answer parts (a) through (h).

(a) Find the intervals where $f(x)$ is increasing.
(b) Find the intervals where $f(x)$ is decreasing.
(c) Find all the x-values where the slope of $f(x)$ is zero.
(d) Find all the x-values where the derivative of $f(x)$ does not exist.
(e) Find all the critical points of $f(x)$.
(f) Find the coordinates of all the relative maxima of $f(x)$.
(g) Find the coordinates of all the relative minima of $f(x)$.
(h) Find all the x-values where $f(x)$ changes from increasing to decreasing or decreasing to increasing.
2. Use the numbered points on the graph of $f(x)$ at the right to answer parts (a) through (h).
(a) At which points is the function increasing?
(b) At which points is there a relative maximum?
(c) At which points is the slope negative?
(d) At which points is the slope zero?
(e) At which points is there a relative minimum?
(f) At which points is the function decreasing?
(g) At which points is the slope positive?

3. Sketch the graph of a single continuous function with a y-intercept at $(0,2)$ that has the following properties.
(1) $f^{\prime}(x)<0$ on $(-\infty,-6) \cup(1,3)$
(3) $f^{\prime \prime}(x)>0$ on $(-\infty,-6) \cup(3, \infty)$
(2) $f^{\prime}(x)>0$ on $(-6,1) \cup(3, \infty)$
(4) $f^{\prime \prime}(x)<0$ on $(-6,3)$
4. Use the second derivative test to find the local extrema of $f(x)=x^{3}-3 x$.
5. Use the graph of $f^{\prime}(x)$ at the right to answer parts (a) through (i).
(a) What is the slope of $f(x)$ at $x=2$?
(b) For which x-values does $f(x)$ have a horizontal tangent line?
(c) Find the intervals where $f(x)$ is increasing.
(d) Find the x-values where $f(x)$ has a relative minimum.
(e) Find the x-values where $f(x)$ has a relative maximum.
(f) Is $f(x)$ increasing or decreasing at $x=5$?
(g) Is $f(x)$ concave up or concave down at $x=4$?
(h) Find the x-values where $f(x)$ has an inflection point.
(i) Find $\lim _{x \rightarrow-\infty} f(x)$.
6. Match each observation 1-5 to each conclusion A-E.
(1) The point $(3,4)$ is on the graph of $f^{\prime}(x)$.

(2) The point $(3,4)$ is on the graph of $f(x)$.
(3) The point $(3,4)$ is on the graph of $f^{\prime \prime}(x)$.
(4) The point $(3,0)$ is on the graph of $f^{\prime}(x)$ and $(3,4)$ is on the graph of $f^{\prime \prime}(x)$.
(5) The point $(3,0)$ is on the graph of $f^{\prime}(x)$ and $(3,-4)$ is on the graph of $f^{\prime \prime}(x)$.
(A) $f(x)$ has a relative minimum at $x=3$.
(B) At $x=3$, the graph of $f(x)$ is concave up.
(C) At $x=3$, the tangent line to the graph of $f(x)$ has slope 4 .
(D) At $x=3$, the value of $f(x)$ is 4 .
(E) $f(x)$ has a relative maximum at $x=3$.
7. In the graph of $f(x)$ at the right, assume that $(-1,1)$ is an inflection point. Use the graph to answer parts (a) through (k).
(a) Find the intervals where $f(x)$ is decreasing.
(b) Find the intervals where $f^{\prime}(x)>0$.
(c) Find all the critical points.
(d) Find the intervals where $f(x)$ is concave up.
(e) Find the intervals where $f(x)$ is concave down.
(f) Is $f^{\prime}(-4)$ positive, negative or zero?
(g) Is $f^{\prime \prime}(-4)$ positive, negative, or zero?
(h) Is $f^{\prime}(0)$ positive, negative or zero?
(i) Is $f^{\prime \prime}(0)$ positive, negative or zero?
(j) Is $f^{\prime}(1)$ positive, negative, or zero?
(k) Is $f^{\prime \prime}(1)$ positive, negative, or zero?

8. Await the instructor directions for the following functions.
(a) $f(x)=x^{3}+3 x^{2}-9 x+4$
(e) $f(x)=x^{4}-4 x^{3}+10$
(b) $f(x)=1+x^{2 / 3}$
(f) $f(x)=6 x^{2 / 3}-4 x$
(c) $f(x)=\frac{x^{2}+4}{2 x}$
(g) $f(x)=\frac{(x+1)^{2}}{1+x^{2}}$
(d) $f(x)=\arcsin (1 / x)$
(h) $f(x)=e^{2 / x}$
